
your smartphone battery dying during an important call versus an electric car accelerating uphill. Both scenarios test energy storage devices, but in completely different ways. Enter the Ragone plot – the nutritional label of energy storage that tells engineers exactly how their devices will perform under pressure.
Every energy storage technology walks a tightrope between two critical factors:
Take lithium-ion batteries – the marathon runners storing 150-250 Wh/kg but delivering only 0.1-1 kW/kg. Contrast this with supercapacitors, the sprinters offering 5-10 Wh/kg but unleashing 10-100 kW/kg in bursts. It's like comparing a diesel generator to a nitro booster!
When Tesla needed emergency power for South Australia's electrical grid, they deployed Powerpack batteries rather than supercapacitors. Why? The Ragone plot showed lithium-ion's superior energy density met the requirement for sustained discharge over hours. Meanwhile, Shanghai's electric buses use supercapacitors at stops for 30-second ultra-fast charging – perfect for their high power demands.
A typical Ragone plot positions technologies along logarithmic axes:
The sweet spot? Technologies plotted closer to the graph's upper-right corner. But here's the kicker – most devices cluster along diagonal lines called "constant discharge time" curves. A lead-acid battery might sit on the 1-hour discharge line, while ultracapacitors cluster near the 10-second line.
Recent developments are reshaping the landscape. MIT's 2024 prototype solid-state battery achieved 400 Wh/kg with 5 kW/kg output – potentially creating a new cluster on the Ragone plot. Meanwhile, NASA's graphene-based supercapacitors are pushing toward 50 Wh/kg while maintaining 100 kW/kg discharge rates.
Selecting energy storage isn't about finding the "best" technology, but the right tool for the job:
The Ragone plot acts as a matchmaking service, helping engineers pair application requirements with storage capabilities. It's like Tinder for electrons – swipe right for chemistry that sparks!
The race to bend the Ragone curve has spawned innovative approaches:
Researchers at Stanford recently demonstrated a "phase-changing" battery that dynamically adjusts its Ragone characteristics based on usage patterns – essentially morphing between battery and capacitor modes. Talk about having your cake and eating it too!
Let's cut through the Wall Street jargon first. A stock ticker acts like a company's fingerprint in financial markets – those 1-5 letter codes like TSLA for Tesla or AAPL for Apple. But here's the rub: there's no publicly traded company called Gambit Energy Storage as of Q1 2025.
a tropical archipelago where 7,000+ islands face frequent power outages while renewable energy projects multiply faster than coconut trees. This paradox makes the Philippines prime real estate for energy storage solutions. Enter EQ Energy Storage Inc., a key player transforming Manila's energy landscape through lithium-ion innovations and AI-driven grid management.
the energy storage game is changing faster than a Tesla's 0-60 acceleration. While lithium-ion batteries hog the spotlight, electrothermal energy storage systems (ETESS) are quietly rewriting the rules of grid-scale energy management. Imagine storing excess solar energy as molten salt or charging up volcanic rocks with off-peak electricity. Sounds like sci-fi? It's already happening in Germany and California.
* Submit a solar project enquiry, Our solar experts will guide you in your solar journey.
No. 333 Fengcun Road, Qingcun Town, Fengxian District, Shanghai
Copyright © 2024 Energy Storage Technology. All Rights Reserved. XML Sitemap